Finding the right OEM (Original Equipment Manufacturer) is one of the hardest parts of launching a custom product. Made-in-China.com hosts thousands of factories offering OEM services, but manually browsing through them is painfully slow.
In this tutorial, I'll show you how to use scraping data to systematically find, filter, and rank OEM manufacturers — turning weeks of manual research into minutes of automated analysis.
Why OEM Sourcing Needs Data
Traditional OEM sourcing looks like this:
- Search Made-in-China.com for your product category
- Click through dozens of supplier profiles
- Manually compare prices, MOQs, and certifications
- Hope you didn't miss a better option on page 15
With scraping data, you can:
- Search across thousands of listings in seconds
- Filter by OEM-specific signals (custom logo, packaging, design)
- Rank manufacturers by verification level, response time, and production capacity
- Cross-reference with other platforms for price validation
Step 1: Collect OEM Manufacturer Data
First, scrape Made-in-China.com for your target product category. The Made-in-China.com Scraper on Apify Store handles pagination, anti-bot measures, and data extraction automatically.
from apify_client import ApifyClient
client = ApifyClient("your-api-token")
run = client.actor("jungle_intertwining/made-in-china-scraper").call(
run_input={
"keyword": "custom phone case manufacturer OEM",
"maxItems": 200,
}
)
products = []
for item in client.dataset(run["defaultDatasetId"]).iterate_items():
products.append(item)
print(f"Collected {len(products)} listings")
Step 2: Identify OEM-Capable Suppliers
Not every supplier on Made-in-China.com offers OEM services. Here's how to filter for OEM capability using scraped data:
def is_oem_capable(product):
"""Check if a supplier likely offers OEM manufacturing."""
oem_signals = [
"oem", "odm", "custom", "customized", "customised",
"your logo", "your brand", "your design", "private label",
"custom packaging", "custom color", "made to order",
"factory direct", "manufacturer"
]
text = " ".join([
product.get("title", ""),
product.get("description", ""),
product.get("supplier", ""),
]).lower()
matches = [s for s in oem_signals if s in text]
return len(matches) >= 2, matches
oem_suppliers = []
for p in products:
is_oem, signals = is_oem_capable(p)
if is_oem:
p["oem_signals"] = signals
oem_suppliers.append(p)
print(f"Found {len(oem_suppliers)} OEM-capable suppliers out of {len(products)}")
Step 3: Build an OEM Manufacturer Scoring System
Once you have OEM-capable suppliers, rank them by reliability and fit:
def score_oem_manufacturer(product):
"""Score an OEM manufacturer on a 0-100 scale."""
score = 0
reasons = []
# Verification level (0-30 points)
supplier_type = product.get("supplierType", "").lower()
if "audited" in supplier_type:
score += 30
reasons.append("Audited supplier (+30)")
elif "verified" in supplier_type:
score += 20
reasons.append("Verified supplier (+20)")
else:
score += 5
reasons.append("Basic supplier (+5)")
# OEM signal strength (0-25 points)
signal_count = len(product.get("oem_signals", []))
signal_score = min(signal_count * 5, 25)
score += signal_score
reasons.append(f"{signal_count} OEM signals (+{signal_score})")
# Price competitiveness (0-20 points)
price = product.get("price")
if price:
try:
price_val = float(
str(price).replace("$", "").split("-")[0].strip()
)
if price_val < 1:
score += 20
reasons.append("Very competitive price (+20)")
elif price_val < 5:
score += 15
reasons.append("Competitive price (+15)")
elif price_val < 20:
score += 10
reasons.append("Moderate price (+10)")
else:
score += 5
reasons.append("Premium price (+5)")
except (ValueError, IndexError):
pass
# MOQ flexibility (0-15 points)
moq = product.get("moq", "")
if moq:
moq_str = str(moq).lower()
try:
moq_val = int("".join(filter(str.isdigit, moq_str.split()[0])))
if moq_val <= 50:
score += 15
reasons.append(f"Low MOQ {moq_val} (+15)")
elif moq_val <= 500:
score += 10
reasons.append(f"Medium MOQ {moq_val} (+10)")
else:
score += 5
reasons.append(f"High MOQ {moq_val} (+5)")
except (ValueError, IndexError):
pass
# Location bonus (0-10 points)
location = product.get("location", "").lower()
oem_hubs = [
"shenzhen", "guangzhou", "dongguan", "foshan", "zhongshan",
"ningbo", "yiwu", "wenzhou", "quanzhou"
]
if any(hub in location for hub in oem_hubs):
score += 10
reasons.append(f"OEM hub location (+10)")
return score, reasons
# Score and rank all OEM suppliers
for supplier in oem_suppliers:
supplier["score"], supplier["score_reasons"] = score_oem_manufacturer(supplier)
oem_suppliers.sort(key=lambda x: x["score"], reverse=True)
# Display top 10
print("\n Top 10 OEM Manufacturers:\n")
for i, s in enumerate(oem_suppliers[:10], 1):
print(f"{i}. [{s['score']}pts] {s.get('supplier', 'Unknown')}")
print(f" Product: {s.get('title', '')[:80]}")
print(f" Price: {s.get('price', 'N/A')} | MOQ: {s.get('moq', 'N/A')}")
print(f" OEM signals: {', '.join(s.get('oem_signals', []))}")
print(f" Scoring: {'; '.join(s.get('score_reasons', []))}")
print()
Step 4: Export Your OEM Shortlist
After identifying your top candidates, export to CSV for team review:
import csv
from datetime import datetime
def export_oem_shortlist(suppliers, filename=None):
"""Export top OEM candidates to CSV for team review."""
if not filename:
filename = f"oem_shortlist_{datetime.now().strftime('%Y%m%d')}.csv"
fields = [
"rank", "score", "supplier", "title", "price", "moq",
"location", "supplierType", "oem_signals", "url"
]
with open(filename, "w", newline="", encoding="utf-8") as f:
writer = csv.DictWriter(f, fieldnames=fields)
writer.writeheader()
for i, s in enumerate(suppliers[:20], 1):
writer.writerow({
"rank": i,
"score": s.get("score", 0),
"supplier": s.get("supplier", ""),
"title": s.get("title", ""),
"price": s.get("price", ""),
"moq": s.get("moq", ""),
"location": s.get("location", ""),
"supplierType": s.get("supplierType", ""),
"oem_signals": ", ".join(s.get("oem_signals", [])),
"url": s.get("url", ""),
})
print(f"Exported {min(len(suppliers), 20)} suppliers to {filename}")
export_oem_shortlist(oem_suppliers)
Step 5: Cross-Platform Price Validation
Smart sourcing means checking multiple platforms. Use the Yiwugo Scraper and DHgate Scraper to cross-reference your top candidates:
def cross_validate_prices(keyword):
"""Compare prices across Made-in-China, Yiwugo, and DHgate."""
platforms = {}
# Check Yiwugo
yiwugo_run = client.actor("jungle_intertwining/yiwugo-scraper").call(
run_input={"keyword": keyword, "maxItems": 50}
)
yiwugo_data = list(
client.dataset(yiwugo_run["defaultDatasetId"]).iterate_items()
)
platforms["yiwugo"] = {
"count": len(yiwugo_data),
"avg_prig_price(yiwugo_data),
}
# Check DHgate
dhgate_run = client.actor("jungle_intertwining/dhgate-scraper").call(
run_input={"keyword": keyword, "maxItems": 50}
)
dhgate_data = list(
client.dataset(dhgate_run["defaultDatasetId"]).iterate_items()
)
platforms["dhgate"] = {
"count": len(dhgate_data),
"avg_price": avg_price(dhgate_data),
}
return platforms
def avg_price(items):
"""Calculate average price from scraped items."""
prices = []
for item in items:
price = item.get("price", "")
try:
val = float(str(price).replace("$", "").split("-")[0].strip())
if 0 < val < 10000:
prices.append(val)
except (ValueError, IndexError):
continue
return round(sum(prices) / len(prices), 2) if prices else None
Key OEM Manufacturing Hubs in China
When evaluating suppliers, location matters. Here are the major OEM hubs by industry:
| Region | Specialization | Why It Matters |
|---|---|---|
| Shenzhen | Electronics, IoT, PCB | Fastest prototyping, huge component ecosystem |
| Dongguan | Consumer goods, toys, packaging | Massive factory density, competitive pricing |
| Guangzhou | Textiles, garments, leather goods | Fashion OEM capital, quick turnaround |
| Ningbo | Auto parts, machinery, hardware | Heavy industry OEM, export port access |
| Yiwu | Small commodities, accessories | Lowest MOQs, widest variety |
| Foshan | Furniture, ceramics, lighting | Quality manufacturing, design capability |
The scoring system above gives bonus points to suppliers in these hubs because they typically have better supply chain access, more experienced OEM workflows, and competitive pricing from cluster effects.
Red Flags to Watch For
Not all OEM claims are gen. Use your scraped data to spot warning signs:
def check_red_flags(product):
"""Identify potential red flags in supplier data."""
flags = []
supplier = product.get("supplier", "").lower()
# Too many product categories (trading company, not factory)
if product.get("category_count", 0) > 10:
flags.append("Too many categories - likely a trading company")
# No verification
supplier_type = product.get("supplierType", "").lower()
if "audited" not in supplier_type and "vot in supplier_type:
flags.append("No third-party verification")
# Suspiciously low MOQ with low price
moq = product.get("moq", "")
price = product.get("price", "")
try:
moq_val = int("".join(filter(str.isdigit, str(moq).split()[0])))
price_val = float(str(price).replace("$", "").split("-")[0].strip())
if moq_val <= 1 and price_val < 0.5:
flags.append("MOQ=1 with very low price - verify quality")
except (ValueError, IndexError):
pass
# Generic company name
generic_terms = ["trading", "import export", "international trade"]
if any(term in supplier for term in generic_terms):
flags.append("Trading company name - may not be actual manufacturer")
return flags
The Complete OEM Sourcing Workflow
Here's the full process:
- Scrape Made-in-China.com for your product category (200+ listings)
- Filter for OEM-capable suppliers using keyword signals
- Score each manufacturer on verification, price, MOQ, and location
- Export your top 20 to a CSV shortlist
- Cross-validate prices on Yiwugo and DHgate
- Check red flags before reaching out
- Contact your top 5 with specific OEM requirements
This data-driven approach typically reduces OEM sourcing time from 2-3 weeks of manual browsing to about 30 minutes of automated analysis.
Related Tools
- Made-in-China.com Scraper - Extract B2B product and supplier data
- Yiwugo Scraper - Wholesale market data from Yiwu
- DHgate Scraper - Cross-border wholesale product data
- China Wholesale Scraper Toolkit - Compare prices across all three platforms
- The Complete Guide to China Wholesale Data Scraping - Comprehensive overview of tools and strategies
Top comments (0)