Chapter 6: Multi-Agent Collaboration Architecture
π― Learning Objective: Design and implement multi-Agent collaboration systems, master inter-Agent communication and task delegation
ποΈ Why Multi-Agent Architecture?
A single Agent is powerful, but faces limitations in complex scenarios:
Single-Agent Limitations
- π§ Cognitive Overload: One Agent handling all task types
- π Context Pollution: Information from different tasks mixed together
- β‘ Performance Bottleneck: Limited single-point processing capacity
- π― Lack of Specialization: Cannot deeply optimize for specific domains
- π Security Risk: All permissions concentrated in one Agent
Multi-Agent Advantages
- π― Specialization: Each Agent focuses on a specific domain
- π Parallel Processing: Handle multiple tasks simultaneously
- π Permission Isolation: Assign minimal permissions as needed
- π Independent Monitoring: Each Agent's performance can be optimized independently
- π‘οΈ Fault Isolation: A single Agent failure doesn't affect the whole system
ποΈ Multi-Agent Architecture Patterns
Pattern 1: Master-Worker
βββββββββββββββββββ
β Master Agent β β Coordination, task dispatch
β (Controller) β
βββββββ¬ββββββββββββ
β
ββββ΄βββ¬βββββββ¬βββββββ
βΌ βΌ βΌ βΌ
βββββββ ββββββ ββββββ βββββββ
β Doc β βCodeβ βDataβ β Web β
βAsst β βAsstβ βAnalβ βSrch β
βββββββ ββββββ ββββββ βββββββ
Use Case: Clear task dispatch and control requirements
Pros: Clear architecture, easy to manage
Cons: Master becomes a bottleneck, limited scalability
Pattern 2: Peer-to-Peer
βββββββ βββββββ βββββββ
βAgentβββββΊβAgentβββββΊβAgentβ
β A β β B β β C β
ββββ¬βββ βββββββ ββββ¬βββ
β β
ββββββββββββ¬βββββββββββ
βΌ
βββββββ
βAgentβ
β D β
βββββββ
Use Case: Agents with relatively equal capabilities, flexible collaboration needed
Pros: High availability, no single point of failure
Cons: Complex coordination, potential conflicts
Pattern 3: Layered Architecture
ββββββββββββββββββββββββββββββ
β UI Layer β
ββββββββββββββββββββββββββββββ€
β Business Logic Layer β
β ββββββββββ ββββββββββββββββ β
β βProject β β Personal β β
β βManager β β Assistant β β
β ββββββββββ ββββββββββββββββ β
ββββββββββββββββββββββββββββββ€
β Service Layer β
β βββββββ βββββββ ββββββββββ β
β β Doc β βEmailβ βCalendarβ β
β β Svc β β Svc β β Svc β β
β βββββββ βββββββ ββββββββββ β
ββββββββββββββββββββββββββββββ€
β Data Layer β
β ββββββββββββ βββββββββββ β
β βFilesystemβ βDatabase β β
β ββββββββββββ βββββββββββ β
ββββββββββββββββββββββββββββββ
Use Case: Complex enterprise applications, clear separation of concerns
Pros: Structured, easy to maintain and extend
Cons: Architecture complexity, communication overhead
π― Hands-On: Building a Multi-Agent System
Let's build a practical multi-Agent collaboration system simulating an intelligent office assistant platform:
Agent Role Design
1. Coordinator Agent
{
"id": "coordinator",
"name": "Coordinator",
"role": "Task dispatch and coordination",
"model": "anthropic/claude-sonnet-4-20250514",
"systemPrompt": "You are an intelligent coordinator responsible for understanding user requests, decomposing complex tasks, and assigning them to specialized Agents...",
"tools": {
"allowlist": [
"sessions_send", "sessions_list", "memory_search",
"memory_get", "read", "write", "message"
]
}
}
2. Email Manager Agent
{
"id": "email-manager",
"name": "Email Manager",
"role": "Email processing and management",
"model": "anthropic/claude-sonnet-4-20250514",
"tools": {
"allowlist": ["read", "write", "web_search", "message", "cron"]
}
}
3. Calendar Manager Agent
{
"id": "calendar-manager",
"name": "Calendar Manager",
"role": "Scheduling and time management",
"model": "anthropic/claude-sonnet-4-20250514",
"tools": {
"allowlist": ["read", "write", "cron", "web_search", "message"]
}
}
4. Document Processor Agent
{
"id": "doc-processor",
"name": "Document Processor",
"role": "Document creation, editing, and management",
"model": "anthropic/claude-sonnet-4-20250514",
"tools": {
"allowlist": ["read", "write", "exec", "web_search", "memory_search"]
}
}
5. Data Analyst Agent
{
"id": "data-analyst",
"name": "Data Analyst",
"role": "Data analysis and report generation",
"model": "anthropic/claude-sonnet-4-20250514",
"tools": {
"allowlist": ["read", "write", "exec", "web_search", "canvas"]
}
}
π Inter-Agent Communication
1. Message Bus Pattern
# message-bus.py β Inter-Agent message bus
import asyncio
import json
import logging
from typing import Dict, List, Callable
from datetime import datetime
class MessageBus:
def __init__(self):
self.subscribers: Dict[str, List[Callable]] = {}
self.message_history: List[Dict] = []
def subscribe(self, topic: str, callback: Callable):
"""Subscribe to a message topic"""
if topic not in self.subscribers:
self.subscribers[topic] = []
self.subscribers[topic].append(callback)
def publish(self, topic: str, message: Dict, sender: str = None):
"""Publish a message"""
msg = {
"id": f"msg_{len(self.message_history)}",
"topic": topic,
"message": message,
"sender": sender,
"timestamp": datetime.now().isoformat()
}
self.message_history.append(msg)
if topic in self.subscribers:
for callback in self.subscribers[topic]:
try:
callback(msg)
except Exception as e:
logging.error(f"Message delivery failed: {e}")
def get_history(self, topic: str = None, limit: int = 100):
"""Get message history"""
messages = self.message_history
if topic:
messages = [m for m in messages if m["topic"] == topic]
return messages[-limit:]
2. Direct Communication
Using OpenClaw's built-in communication mechanism:
# In the Coordinator Agent
async def delegate_task(task_type: str, task_data: dict):
"""Delegate a task to a specialized Agent"""
agent_mapping = {
"email": "email-manager",
"calendar": "calendar-manager",
"document": "doc-processor",
"analysis": "data-analyst"
}
target_agent = agent_mapping.get(task_type)
if not target_agent:
return {"error": "Unknown task type"}
message = f"Please handle the following task: {json.dumps(task_data)}"
result = await sessions_send(
sessionKey=f"agent:{target_agent}:main",
message=message,
timeoutSeconds=60
)
return result
3. Workflow Orchestration
{
"workflow": {
"name": "Intelligent Email Processing",
"steps": [
{
"id": "email_classification",
"agent": "email-manager",
"action": "classify_emails",
"input": "${user_input}",
"output": "email_categories"
},
{
"id": "urgent_handling",
"agent": "coordinator",
"condition": "${email_categories.urgent_count} > 0",
"action": "handle_urgent_emails",
"input": "${email_categories.urgent_emails}"
},
{
"id": "schedule_check",
"agent": "calendar-manager",
"parallel": true,
"action": "check_calendar_conflicts",
"input": "${email_categories.meeting_requests}"
},
{
"id": "generate_report",
"agent": "doc-processor",
"action": "create_email_summary",
"input": {
"classified": "${email_categories}",
"calendar": "${schedule_check.result}"
}
}
]
}
}
π Complete Multi-Agent Configuration
{
"gateway": {
"port": 18789,
"bind": "loopback",
"cors": true,
"maxConcurrency": 20
},
"agents": [
{
"id": "coordinator",
"name": "Coordinator",
"model": "anthropic/claude-sonnet-4-20250514",
"workspace": {"root": "./agents/coordinator"},
"maxConcurrency": 5
},
{
"id": "email-manager",
"name": "Email Manager",
"model": "anthropic/claude-sonnet-4-20250514",
"workspace": {"root": "./agents/email-manager"},
"maxConcurrency": 3
},
{
"id": "calendar-manager",
"name": "Calendar Manager",
"model": "anthropic/claude-sonnet-4-20250514",
"workspace": {"root": "./agents/calendar-manager"},
"maxConcurrency": 2
},
{
"id": "doc-processor",
"name": "Document Processor",
"model": "anthropic/claude-sonnet-4-20250514",
"workspace": {"root": "./agents/doc-processor"},
"maxConcurrency": 3
},
{
"id": "data-analyst",
"name": "Data Analyst",
"model": "anthropic/claude-sonnet-4-20250514",
"workspace": {"root": "./agents/data-analyst"},
"maxConcurrency": 2
}
],
"tools": {
"allowlists": {
"coordinator": [
"sessions_send", "sessions_list", "memory_search",
"memory_get", "read", "write", "message"
],
"email-manager": [
"read", "write", "web_search", "message", "cron"
],
"calendar-manager": [
"read", "write", "cron", "web_search", "message"
],
"doc-processor": [
"read", "write", "exec", "web_search", "memory_search"
],
"data-analyst": [
"read", "write", "exec", "web_search", "canvas"
]
}
}
}
π Deployment and Testing
Create Agent Workspaces
# Create directories for each Agent
mkdir -p agents/{coordinator,email-manager,calendar-manager,doc-processor,data-analyst}
# Create base files for each Agent
for agent in coordinator email-manager calendar-manager doc-processor data-analyst; do
mkdir -p agents/$agent/{memory,logs,projects}
touch agents/$agent/{MEMORY.md,SOUL.md,USER.md}
done
Start the System
# Start the OpenClaw Gateway
openclaw gateway start
# Verify all Agents loaded successfully
openclaw status
# Test Agent communication
curl -X POST http://localhost:18789/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "coordinator",
"messages": [
{"role": "user", "content": "Please introduce the team members"}
]
}'
π οΈ Optimization Best Practices
1. Load Balancing
{
"loadBalancer": {
"strategy": "round-robin", // round-robin, least-connections, weighted
"healthCheck": {
"enabled": true,
"interval": 30000,
"timeout": 5000
}
}
}
2. Fault Recovery
{
"agents": [
{
"id": "coordinator",
"retry": {
"enabled": true,
"maxAttempts": 3,
"backoff": "exponential"
},
"fallback": {
"agent": "backup-coordinator",
"message": "The primary coordinator is temporarily unavailable. A backup coordinator is serving you."
}
}
]
}
3. Cache Optimization
{
"agents": [
{
"id": "data-analyst",
"caching": {
"enabled": true,
"ttl": 3600,
"maxSize": "100MB",
"strategy": "LRU"
}
}
]
}
β Chapter Summary
After this chapter, you should have mastered:
- [x] Multi-Agent architecture design patterns and use cases
- [x] Inter-Agent communication mechanisms
- [x] Complete multi-Agent system configuration and deployment
- [x] Task dispatch and collaboration workflow design
- [x] System monitoring and performance optimization
- [x] Fault handling and load balancing strategies
π Next Steps
Next Chapter: Memory and Data Management β
π Practice Projects
Project 1: Intelligent Customer Service
- Design 3β5 specialized Agents (pre-sales, post-sales, tech support, etc.)
- Implement automatic issue classification and handoff
- Build a knowledge base and FAQ system
Project 2: Content Creation Factory
- Create multiple content creation Agents (writing, design, video, etc.)
- Automate the content production pipeline
- Establish quality control and review mechanisms
Project 3: Enterprise Automation Platform
- Design department-specific Agents (HR, Finance, IT, etc.)
- Implement cross-department collaboration workflows
- Build permission management and approval processes
Ready to tackle more complex system integration? π―
Top comments (0)