DEV Community

linou518
linou518

Posted on

OpenClaw Guide Ch6: Multi-Agent Collaboration Architecture

Chapter 6: Multi-Agent Collaboration Architecture

🎯 Learning Objective: Design and implement multi-Agent collaboration systems, master inter-Agent communication and task delegation

πŸ—οΈ Why Multi-Agent Architecture?

A single Agent is powerful, but faces limitations in complex scenarios:

Single-Agent Limitations

  • 🧠 Cognitive Overload: One Agent handling all task types
  • πŸ”„ Context Pollution: Information from different tasks mixed together
  • ⚑ Performance Bottleneck: Limited single-point processing capacity
  • 🎯 Lack of Specialization: Cannot deeply optimize for specific domains
  • πŸ”’ Security Risk: All permissions concentrated in one Agent

Multi-Agent Advantages

  • 🎯 Specialization: Each Agent focuses on a specific domain
  • πŸš€ Parallel Processing: Handle multiple tasks simultaneously
  • πŸ”’ Permission Isolation: Assign minimal permissions as needed
  • πŸ“Š Independent Monitoring: Each Agent's performance can be optimized independently
  • πŸ›‘οΈ Fault Isolation: A single Agent failure doesn't affect the whole system

πŸ›οΈ Multi-Agent Architecture Patterns

Pattern 1: Master-Worker

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Master Agent  β”‚  ← Coordination, task dispatch
β”‚   (Controller)  β”‚
β””β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
      β”‚
   β”Œβ”€β”€β”΄β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”
   β–Ό     β–Ό      β–Ό      β–Ό
β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”
β”‚ Doc β”‚ β”‚Codeβ”‚ β”‚Dataβ”‚ β”‚ Web β”‚
β”‚Asst β”‚ β”‚Asstβ”‚ β”‚Analβ”‚ β”‚Srch β”‚
β””β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”˜
Enter fullscreen mode Exit fullscreen mode

Use Case: Clear task dispatch and control requirements
Pros: Clear architecture, easy to manage
Cons: Master becomes a bottleneck, limited scalability

Pattern 2: Peer-to-Peer

β”Œβ”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”
β”‚Agent│◄──►│Agent│◄──►│Agentβ”‚
β”‚  A  β”‚    β”‚  B  β”‚    β”‚  C  β”‚
β””β”€β”€β”¬β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”¬β”€β”€β”˜
   β”‚                     β”‚
   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β–Ό
           β”Œβ”€β”€β”€β”€β”€β”
           β”‚Agentβ”‚
           β”‚  D  β”‚
           β””β”€β”€β”€β”€β”€β”˜
Enter fullscreen mode Exit fullscreen mode

Use Case: Agents with relatively equal capabilities, flexible collaboration needed
Pros: High availability, no single point of failure
Cons: Complex coordination, potential conflicts

Pattern 3: Layered Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚     UI Layer               β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚   Business Logic Layer     β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚Project β”‚ β”‚  Personal    β”‚ β”‚
β”‚ β”‚Manager β”‚ β”‚  Assistant   β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚    Service Layer           β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ Doc β”‚ β”‚Emailβ”‚ β”‚Calendarβ”‚ β”‚
β”‚ β”‚ Svc β”‚ β”‚ Svc β”‚ β”‚  Svc   β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚     Data Layer             β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚   β”‚Filesystemβ”‚ β”‚Database β”‚ β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Enter fullscreen mode Exit fullscreen mode

Use Case: Complex enterprise applications, clear separation of concerns
Pros: Structured, easy to maintain and extend
Cons: Architecture complexity, communication overhead


🎯 Hands-On: Building a Multi-Agent System

Let's build a practical multi-Agent collaboration system simulating an intelligent office assistant platform:

Agent Role Design

1. Coordinator Agent

{
  "id": "coordinator",
  "name": "Coordinator",
  "role": "Task dispatch and coordination",
  "model": "anthropic/claude-sonnet-4-20250514",
  "systemPrompt": "You are an intelligent coordinator responsible for understanding user requests, decomposing complex tasks, and assigning them to specialized Agents...",
  "tools": {
    "allowlist": [
      "sessions_send", "sessions_list", "memory_search",
      "memory_get", "read", "write", "message"
    ]
  }
}
Enter fullscreen mode Exit fullscreen mode

2. Email Manager Agent

{
  "id": "email-manager",
  "name": "Email Manager",
  "role": "Email processing and management",
  "model": "anthropic/claude-sonnet-4-20250514",
  "tools": {
    "allowlist": ["read", "write", "web_search", "message", "cron"]
  }
}
Enter fullscreen mode Exit fullscreen mode

3. Calendar Manager Agent

{
  "id": "calendar-manager",
  "name": "Calendar Manager",
  "role": "Scheduling and time management",
  "model": "anthropic/claude-sonnet-4-20250514",
  "tools": {
    "allowlist": ["read", "write", "cron", "web_search", "message"]
  }
}
Enter fullscreen mode Exit fullscreen mode

4. Document Processor Agent

{
  "id": "doc-processor",
  "name": "Document Processor",
  "role": "Document creation, editing, and management",
  "model": "anthropic/claude-sonnet-4-20250514",
  "tools": {
    "allowlist": ["read", "write", "exec", "web_search", "memory_search"]
  }
}
Enter fullscreen mode Exit fullscreen mode

5. Data Analyst Agent

{
  "id": "data-analyst",
  "name": "Data Analyst",
  "role": "Data analysis and report generation",
  "model": "anthropic/claude-sonnet-4-20250514",
  "tools": {
    "allowlist": ["read", "write", "exec", "web_search", "canvas"]
  }
}
Enter fullscreen mode Exit fullscreen mode

πŸ”„ Inter-Agent Communication

1. Message Bus Pattern

# message-bus.py β€” Inter-Agent message bus
import asyncio
import json
import logging
from typing import Dict, List, Callable
from datetime import datetime

class MessageBus:
    def __init__(self):
        self.subscribers: Dict[str, List[Callable]] = {}
        self.message_history: List[Dict] = []

    def subscribe(self, topic: str, callback: Callable):
        """Subscribe to a message topic"""
        if topic not in self.subscribers:
            self.subscribers[topic] = []
        self.subscribers[topic].append(callback)

    def publish(self, topic: str, message: Dict, sender: str = None):
        """Publish a message"""
        msg = {
            "id": f"msg_{len(self.message_history)}",
            "topic": topic,
            "message": message,
            "sender": sender,
            "timestamp": datetime.now().isoformat()
        }

        self.message_history.append(msg)

        if topic in self.subscribers:
            for callback in self.subscribers[topic]:
                try:
                    callback(msg)
                except Exception as e:
                    logging.error(f"Message delivery failed: {e}")

    def get_history(self, topic: str = None, limit: int = 100):
        """Get message history"""
        messages = self.message_history
        if topic:
            messages = [m for m in messages if m["topic"] == topic]
        return messages[-limit:]
Enter fullscreen mode Exit fullscreen mode

2. Direct Communication

Using OpenClaw's built-in communication mechanism:

# In the Coordinator Agent
async def delegate_task(task_type: str, task_data: dict):
    """Delegate a task to a specialized Agent"""

    agent_mapping = {
        "email": "email-manager",
        "calendar": "calendar-manager",
        "document": "doc-processor",
        "analysis": "data-analyst"
    }

    target_agent = agent_mapping.get(task_type)
    if not target_agent:
        return {"error": "Unknown task type"}

    message = f"Please handle the following task: {json.dumps(task_data)}"

    result = await sessions_send(
        sessionKey=f"agent:{target_agent}:main",
        message=message,
        timeoutSeconds=60
    )

    return result
Enter fullscreen mode Exit fullscreen mode

3. Workflow Orchestration

{
  "workflow": {
    "name": "Intelligent Email Processing",
    "steps": [
      {
        "id": "email_classification",
        "agent": "email-manager",
        "action": "classify_emails",
        "input": "${user_input}",
        "output": "email_categories"
      },
      {
        "id": "urgent_handling",
        "agent": "coordinator",
        "condition": "${email_categories.urgent_count} > 0",
        "action": "handle_urgent_emails",
        "input": "${email_categories.urgent_emails}"
      },
      {
        "id": "schedule_check",
        "agent": "calendar-manager",
        "parallel": true,
        "action": "check_calendar_conflicts",
        "input": "${email_categories.meeting_requests}"
      },
      {
        "id": "generate_report",
        "agent": "doc-processor",
        "action": "create_email_summary",
        "input": {
          "classified": "${email_categories}",
          "calendar": "${schedule_check.result}"
        }
      }
    ]
  }
}
Enter fullscreen mode Exit fullscreen mode

πŸ“ Complete Multi-Agent Configuration

{
  "gateway": {
    "port": 18789,
    "bind": "loopback",
    "cors": true,
    "maxConcurrency": 20
  },
  "agents": [
    {
      "id": "coordinator",
      "name": "Coordinator",
      "model": "anthropic/claude-sonnet-4-20250514",
      "workspace": {"root": "./agents/coordinator"},
      "maxConcurrency": 5
    },
    {
      "id": "email-manager",
      "name": "Email Manager",
      "model": "anthropic/claude-sonnet-4-20250514",
      "workspace": {"root": "./agents/email-manager"},
      "maxConcurrency": 3
    },
    {
      "id": "calendar-manager",
      "name": "Calendar Manager",
      "model": "anthropic/claude-sonnet-4-20250514",
      "workspace": {"root": "./agents/calendar-manager"},
      "maxConcurrency": 2
    },
    {
      "id": "doc-processor",
      "name": "Document Processor",
      "model": "anthropic/claude-sonnet-4-20250514",
      "workspace": {"root": "./agents/doc-processor"},
      "maxConcurrency": 3
    },
    {
      "id": "data-analyst",
      "name": "Data Analyst",
      "model": "anthropic/claude-sonnet-4-20250514",
      "workspace": {"root": "./agents/data-analyst"},
      "maxConcurrency": 2
    }
  ],
  "tools": {
    "allowlists": {
      "coordinator": [
        "sessions_send", "sessions_list", "memory_search",
        "memory_get", "read", "write", "message"
      ],
      "email-manager": [
        "read", "write", "web_search", "message", "cron"
      ],
      "calendar-manager": [
        "read", "write", "cron", "web_search", "message"
      ],
      "doc-processor": [
        "read", "write", "exec", "web_search", "memory_search"
      ],
      "data-analyst": [
        "read", "write", "exec", "web_search", "canvas"
      ]
    }
  }
}
Enter fullscreen mode Exit fullscreen mode

πŸš€ Deployment and Testing

Create Agent Workspaces

# Create directories for each Agent
mkdir -p agents/{coordinator,email-manager,calendar-manager,doc-processor,data-analyst}

# Create base files for each Agent
for agent in coordinator email-manager calendar-manager doc-processor data-analyst; do
  mkdir -p agents/$agent/{memory,logs,projects}
  touch agents/$agent/{MEMORY.md,SOUL.md,USER.md}
done
Enter fullscreen mode Exit fullscreen mode

Start the System

# Start the OpenClaw Gateway
openclaw gateway start

# Verify all Agents loaded successfully
openclaw status

# Test Agent communication
curl -X POST http://localhost:18789/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "coordinator",
    "messages": [
      {"role": "user", "content": "Please introduce the team members"}
    ]
  }'
Enter fullscreen mode Exit fullscreen mode

πŸ› οΈ Optimization Best Practices

1. Load Balancing

{
  "loadBalancer": {
    "strategy": "round-robin",  // round-robin, least-connections, weighted
    "healthCheck": {
      "enabled": true,
      "interval": 30000,
      "timeout": 5000
    }
  }
}
Enter fullscreen mode Exit fullscreen mode

2. Fault Recovery

{
  "agents": [
    {
      "id": "coordinator",
      "retry": {
        "enabled": true,
        "maxAttempts": 3,
        "backoff": "exponential"
      },
      "fallback": {
        "agent": "backup-coordinator",
        "message": "The primary coordinator is temporarily unavailable. A backup coordinator is serving you."
      }
    }
  ]
}
Enter fullscreen mode Exit fullscreen mode

3. Cache Optimization

{
  "agents": [
    {
      "id": "data-analyst",
      "caching": {
        "enabled": true,
        "ttl": 3600,
        "maxSize": "100MB",
        "strategy": "LRU"
      }
    }
  ]
}
Enter fullscreen mode Exit fullscreen mode

βœ… Chapter Summary

After this chapter, you should have mastered:

  • [x] Multi-Agent architecture design patterns and use cases
  • [x] Inter-Agent communication mechanisms
  • [x] Complete multi-Agent system configuration and deployment
  • [x] Task dispatch and collaboration workflow design
  • [x] System monitoring and performance optimization
  • [x] Fault handling and load balancing strategies

πŸš€ Next Steps

Next Chapter: Memory and Data Management β†’


πŸ“ Practice Projects

Project 1: Intelligent Customer Service

  • Design 3–5 specialized Agents (pre-sales, post-sales, tech support, etc.)
  • Implement automatic issue classification and handoff
  • Build a knowledge base and FAQ system

Project 2: Content Creation Factory

  • Create multiple content creation Agents (writing, design, video, etc.)
  • Automate the content production pipeline
  • Establish quality control and review mechanisms

Project 3: Enterprise Automation Platform

  • Design department-specific Agents (HR, Finance, IT, etc.)
  • Implement cross-department collaboration workflows
  • Build permission management and approval processes

Ready to tackle more complex system integration? 🎯

Top comments (0)